Вентилирование помещений

Возможность снижения концентрации радона в воздухе помещений за счет их вентиляции наружным воздухом ограничена максимальной допустимой (или экономически оправданной) величиной кратности воздухообмена. Поэтому вентиляцию следует рассматривать только как вспомогательное средство, дополняющее другие решения. Интенсификация вентиляции ведет к увеличению затрат энергии на отопление здания.

В случае устройства столбчатого фундамента, совершенно открытом подпольном пространстве и отсутствии выделений радона из ограждающих конструкций, активность радона в помещениях первого этажа не превышает его активности в наружном воздухе. Необходимый для этого воздухообмен в подполье обеспечивается, если его высота от уровня земли составляет не менее 0,7м. Однако, такое решение не может иметь широкого применения из-за потери полезного пространства в объеме здания и необходимости в существенном повышении термического сопротивления нижнего перекрытия. Для обеспечения умеренного естественного сквозного проветривания закрытых подполий и неотапливаемых подвалов, рекомендуется устройство вентиляционных проемов в цоколе на всех фасадах здания с суммарной площадью проемов, составляющей от 1 до 1,5% от площади подвала.

При использовании системы принудительной вентиляции помещений не допускается, чтобы при ее работе давление в помещении было ниже, чем в подвале или подполье. Избыточное давление в помещениях препятствует проникновению в них радона через подвальное перекрытие, однако, при этом ухудшается влажностный режим всех ограждающих конструкций. Оптимальной является хорошо сбалансированная система приточно-вытяжной вентиляции, обеспечивающая требуемую по гигиеническим соображениям кратность воздухообмена в помещениях и минимальный перепад давлений между подвальными и вышерасположенными помещениями.

Мембрана

Радоноизолирующие мембраны применяются при устройстве фундаментных плит, стен и перекрытий подвалов из монолитного железобетона или сборных железобетонных элементов для предотвращения переноса радона через поры, трещины, стыки и воздушные полости в этих конструкциях.

Вид материала мембраны, способы ее крепления к несущему слою конструкции и соединения отдельных частей между собой зависят от места расположения мембраны и вида конструкции.

При устройстве мембраны важно обеспечить её сплошность в пределах защищаемой площади конструкции и возможность упруго-пластической деформации при подвижках несущей конструкции. Рулонная гидроизоляция внешней поверхности фундаментных стен представляет типичный случай устройства мембраны. Однако, требования к качеству гидроизоляции, выполняющей одновременно функцию противорадоновой защиты, более высоки.

Во избежание разрывов и проколов такие мембраны должны наноситься на выровненную поверхность, кромки полос материала мембраны должны перекрываться внахлест не менее чем на 30 см и проклеиваться.

Рассмотрим сборное железобетонное перекрытие с мембраной, расположенной на верхней поверхности плит. В случае устройства такой мембраны после возведения стен, герметизация перекрытия по периметру помещений неэффективна, а при установке мембраны до возведения стен — велика вероятность ее повреждения при производстве дальнейших строительных работ. Во избежание этого рекомендуется после завершения нулевого цикла работ произвести выравнивание поверхности плит и укрепить полосы изоляционного материала по осям стен и перегородок. Ширина полос должна быть на 35 — 40 см больше толщины наружных и на 70 см больше толщины внутренних стен и перегородок. Укрепление мембраны на оставшейся незащищенной поверхности перекрытия производится после возведения стен непосредственно перед устройством пола.

Коллектор радона

Высокая концентрация радона в почвенном газе в числе прочего обусловлена низким воздухообменом в грунте. При установке мембран на уровне подвального пола выход радона из грунта под зданием затрудняется и его концентрация в почвенном воздухе резко возрастает. Разность концентраций радона в грунте и в подпольном пространстве при наличии мембраны оказывается значительно выше, чем при её отсутствии.

Эффективность мембраны значительно повышается при создании возможности для свободного выхода (естественной вытяжки) радона из грунта под зданием в окружающее пространство. С этой целью рекомендуется устройство под плитой с мембраной коллектора радона в виде слоя крупнозернистой, свободно проводящей газ подсыпки и трубы, служащей для отвода радона из подсыпки в атмосферу.

Для устройства подсыпки рекомендуется использовать промытый гравий или щебень из твердых горных пород с размерами зерен около 18-20 мм (не менее 80% состава) или другой влагоустойчивый материал, где доля пустот в насыпном слое составляет не менее 40%. Толщина подсыпки должна составлять не менее 15 см, при производстве работ следует принять меры предосторожности от попадания в подсыпку мелкодисперсных загрязнений. При высоком уровне грунтовых вод гравийная подсыпка одновременно выполняет функцию дренажа. Во избежание его заиливания под гравийным слоем предусматривается слой фильтрующего материала, например, 10 см слой крупнозернистого песка.

При самотечном сбросе грунтовой воды во внешнюю сеть в отводной дренажной трубе необходимо предусмотреть обслуживаемый водяной затвор с не менее, чем 15 см высотой запирающего столба. Для доливки воды в водяной затвор должен быть предусмотрен специальный стояк с воронкой.

Вывод радона из гравийного слоя в окружающее пространство осуществляется через систему металлических или пластмассовых труб диаметром не менее 10 см. Система состоит из подземной и надземной частей. Подземная часть устанавливается в гравийном слое и предназначена для сбора почвенного газа. Надземная часть (стояки) служит для отвода газа из подземной части в атмосферу. Свободные концы труб в подземной части должны быть открыты, а сами трубы перфорированы. Одна подземная труба обеспечивает отвод радона с 40 — 50 м 2 защищаемой площади. При этом необходимо предусматривать, чтобы фундаменты внутренних стен не создавали препятствия для свободного перемещения газа к трубам на всей защищаемой площади.

В зависимости от площади дома трубы в гравийном слое могут прокладываться по осям защищаемой площади или вдоль фундаментов.

Эффективность коллектора может быть повышена при устройстве в центре защищаемой площади специальной камеры для сбора радона. В этом случае подземная часть трубы не перфорируется. Стенки камеры рекомендуется сложить из кирпича без применения раствора так, чтобы в каждом ряду между торцами кирпичей оставались щели шириной 40 — 50 мм.

С целью снижения потерь статического давления, а также уменьшения конденсатообразования в стояках, рекомендуется устанавливать их внутри дома у внутренних стен. Схема прокладки вытяжных труб должна иметь минимальное число изгибов и горизонтальных элементов и обеспечивать свободный сток конденсата из труб в гравийный слой.

Точки выброса почвенного газа в атмосферу должны располагаться:

— не менее чем на 0.5 м выше верхней отметки крыши;
— не менее чем на 3 м выше уровня земли;
— не менее чем на З м от любых проемов в наружных ограждающих конструкциях защищаемого или соседнего здания.

При устройстве внутренних стояков создается более сильная естественная тяга и по этой причине они предпочтительнее внешних, однако при этом должна быть обеспечена их герметичность во избежание проникновения радона из стояков в помещения. Проходящие через чердак участки стояков рекомендуется теплоизолировать.

Эффективная работа коллектора радона с естественной вытяжкой обеспечивается при разности давлений в гравийном слое и на выходе стояка не менее 3-5 Па.

На все элементы вытяжной системы противорадоновой защиты рекомендуется нанести соответствующую маркировку для ее отличия от элементов других систем (канализации, вентиляции помещений и т.п.).

Депрессия грунтового основания

Наиболее высокий эффект противорадоновой защиты здания достигается при депрессии (создании зоны пониженного давления) грунтового основания подвального пола. Депрессия обеспечивается при дополнении коллектора радона специальной системой принудительной вытяжной вентиляции, совершенно не связанной с вентиляцией помещений.

При использовании принудительной вытяжки эффективная работа системы защиты обеспечивается при установке одной подземной трубы из расчета на 100 -120 м2 защищаемой площади и использовании вентилятора низкого давления с производительностью от 150 до 250 м3/ч. Вентиляторы должны иметь герметичный корпус и располагаться в вертикальной части труб как можно ближе к точке выброса почвенного газа в атмосферу.

Крепление вентилятора рекомендуется производить с помощью съемного крепежа и гибкого герметичного соединения корпуса с трубой. Установка вентиляторов в подвале и др. помещениях здания, кроме чердака, не допускается.

Для управления работой вентилятора рекомендуется устанавливать два выключателя. Один устанавливается в удобном для пользователя месте, второй в непосредственной близости к вентилятору для исключения возможности его включения при производстве ремонтных или профилактических работ. Для контроля состояния и эффективности работы системы вытяжной вентиляции могут быть использованы устанавливаемые на трубах датчики давления, а также устройства сигнализации.

Уплотнение швов, стыков и проемов

Радонозащитная способность хорошо изолированной ограждающей конструкции может быть практически сведена к нулю при наличии в ней неуплотненных швов, стыков и технологических проемов. В общем случае при проектировании сетей инженерных коммуникаций необходимо стремиться к тому, чтобы число таких проемов в направлении возможного движения радона от источника в помещения было минимальным.

При устройстве герметизируемых стыков элементов ограждающих конструкций, а также узлов их пересечения трубами, кабелями и т.п., следует учитывать неизбежность подвижки элементов вследствие температурных деформации и осадки. Узлы пересечения должны быть доступны для контроля и ремонта в процессе эксплуатации, а уплотнение зазоров в узлах должно производиться нетвердеющими или упругими материалами.